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Abstract

This paper discusses a new signal processing tool involving the use of empirical mode decomposition and its application
to health monitoring of structures. Empirical mode decomposition is a time-series analysis method that extracts a custom
set of basis functions to describe the vibratory response of a system. In conjunction with the Hilbert Transform, the
empirical mode decomposition method provides some unique information about the nature of the vibratory response. In
this paper, the method is used to process time-series data from a variety of 1-D structures with and without structural
damage. Empirically derived basis functions are processed through the Hilbert-Huang Transform to obtain magnitude,
phase, and damping information. This magnitude, phase, and damping information is later processed to extract the
underlying incident energy propagating through the structure. This incident energy is also referred to as the dereverberated
response of a structure. Using simple physics-based models of 1-D structures, it is possible to determine the location and
extent of damage by tracking phase properties between successive degrees of freedom. This paper also presents
experimental validation of this approach using a civil building model. Results illustrate that this new time-series method is
a powerful signal processing tool that tracks unique features in the vibratory response of structures.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction—advanced diagnostic methods

In recent years, there have been an extensive amount of research associated with the development of health
monitoring methods for simple and complex mechanical, civil and aerospace systems, including buildings,
elevator systems, and aerospace systems such as aging aircraft and rotorcraft. For many of these applications
a complete framework for health monitoring of these systems is still evolving. Thus, there are a number of
critical elements that are essential to successful application of robust structural health monitoring systems.
These include elements such as the choice of sensors, electronics and software. At the core of this framework
are the diagnostic and prognostic signal processing algorithms used to detect the presence, magnitude and
extent of structural damage. The emergence of this field has led to a variety of on-line and off-line diagnostic
methods for detecting, locating and quantifying varying degrees of damage. For structural components, these
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diagnostic techniques might be classified into four broad categories: (1) modal-based methods; (2) local
diagnostic methods; (3) non-parametric methods, “‘blackbox”; (4) time-series/non-stationary methods.

With respect to modal methods, numerous researchers have developed analytical and experimental damage
detection algorithms using experimentally measured mode shapes and natural frequencies [1]. However, modal
techniques have not been widely accepted for practical structural systems, because of their sensitivity to sensor
spacing, environmental effects (temperature, moisture), nonlinearities and boundary conditions. To counter
many of these pitfalls, local diagnostic methods using piezoelectric sensors/actuators have evolved to improve
sensitivity to local failure modes. These techniques rely on being in close proximity to structural damage and
typically require many sensors distributed throughout a structure to achieve acceptable performance. Similar
to conventional non-destructive evaluation methods, these local structural diagnostic methods tend to be
qualitative in nature, especially in the high-frequency domain (>20kHz). Typically, a damage index is
developed to infer the presence and type of damage, as well as track increases in the amount of damage.
Similar to modal methods, local diagnostic techniques also suffer from environmental effects, structural
nonlinearities and high sensor density. Non-parametric methods such as neural networks and ARMA models
have evolved to overcome the problems associated with environmental changes and system nonlinearities.
Typically, statistical averaging is used to obtain mean characteristics of the signal response from a structure.
By improving on local methods, this leads to a qualitative monitoring approach that is robust to
environmental effects since statistical averaging is used to obtain mean representations of structures with and
without damage. However, it becomes difficult to quantify damage without a physics-based coupling to the
non-parametric parameters. The use of time-series analysis/non-stationary processing coupled with local
physics-based models of structures is receiving increasing attention in the field of health monitoring. Time-
series analysis such as the wavelet approach permit vibration signals from structures to be decomposed into
fundamental basis functions that are used to characterize the vibration response. By tracking changes in these
fundamental basis functions, it is possible to detect structural defects through inspection of time—frequency
properties of the vibration signal.

Recently, a new time-series method has been developed to analyze nonlinear and non-stationary data [2]. A
key property of the method is the extraction of ‘““intrinsic mode functions” that admit well-behaved Hilbert
Transforms in magnitude and phase. This approach is adaptive and lends itself to any time-series. When
coupled with the Hilbert Transform, the ““intrinsic mode functions” yield instantaneous frequencies as
functions of time that give sharp identification of fundamental properties of vibration signals. For instance,
instantaneous frequency, amplitude and damping can be extracted. In this paper, this information is used to
track the damage in simple 1-D structures, including a scaled civil building testbed. The next section reviews
the state of the art in spectral analysis of vibration data.

2. Spectral analysis of vibration data
2.1. Time-domain analysis

Prior to the discovery of the FFT and the implementation of the first real-time spectral analyzers, vibration
analysis was predominantly performed by looking at details of the time-domain waveform of the signal.
Although this enabled rudimentary detection and diagnosis of faults by examining the major repetitive
components of a signal, complex signals with a multitude of components could not be accurately assessed.
This lead to the emergence of several techniques that can be used to enhance the characteristics that are
otherwise not readily observable from the time waveform. These include time-synchronous averaging, and
auto-correlation of the signal. Time synchronous averaging uses the average of the signal over a large number
of cycles, synchronous to the running speed of the machine. This attenuates any contributions due to noise or
non-synchronous vibrations. The auto-correlation function is the average of the product. Application of the
auto-correlation function on the time series allows us to indirectly obtain information about the frequencies
present in the signal. However, these techniques only provide a limited amount of additional information. The
need to distinguish between components of a similar nature or hidden within a complex vibration signal led to
the mathematical representation of these signals in terms of their orthogonal basis functions, a field of
mathematics whose origins date back to investigations into the properties of heat transfer.
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2.2. Frequency-domain analysis

The advent of the Fourier Series in the early 1800s by Joseph Fourier (1768—1830) provided the foundations
for modern signal analysis, as well as the basis for a significant proportion of the mathematical research
undertaken in the 19th and 20th centuries. Fourier introduced the concept that an arbitrary function, even a
function which exhibits discontinuity’s, could be expressed by a single analytical expression. For a continuous
function of period 7, the Fourier series is given by

a, nm . (NT
f(t)=?+ E (an cos<7t)+bn s1n<71)), (1)
where the Fourier coefficients are calculated by
1 nnt
an =7 / F(1) cos(7) ds, )
by =+ / F(z)sin(”l’) dr 3)
"TT T ’

The coefficients of these orthonormal basis functions represent the contribution of the sine and cosine
components of the signal at all frequencies. This allows the signal to be analyzed in terms of its frequency
components. Despite the functionality of the Fourier transform, especially in regard to obtaining the spectral
analysis of a signal, there are several shortcomings of this technique. The first of these is the inability of the
Fourier transform to accurately represent functions that have non-periodic components that are localized in
time or space, such as transient impulses. This is due to the Fourier transform being based on the assumption
that the signal to be transformed is periodic in nature and of infinite length. Another deficiency is its inability
to provide any information about the time dependence of a signal, as results are averaged over the entire
duration of the signal. This is a problem when analyzing signals of a non-stationary nature, where it is often
beneficial to be able to acquire a correlation between the time and frequency domains of a signal. This is often
the case when monitoring mechanical vibrations.

A variety of alternative schemes have been developed to improve the description of non-stationary vibration
signals. These range from developing mathematical models of the signal, to converting the signal into a
pseudo-stationary signal through angular sampling, and time—frequency analysis of the vibrations.

2.3. Time—frequency signal analysis

As noted by Ville in 1947 [3] there are two basic approaches to time—frequency analysis. The first approach
is to initially cut the signal into slices in time, and then to analyze each of these slices separately to examine
their frequency content. The other approach is to first filter different frequency bands, and then cut these
bands into slices in time and analyze their energy content. The first of these approaches is used for the
construction of the short-time Fourier transform and the Wigner—Ville transform, while the second leads to
discussions involving the wavelet transform. The wavelet transform is a mechanism used to separate a signal
into its constituent parts, thus enabling analysis of data in different frequency domains with each components
resolution matched to its scale. Alternatively, this may be seen as a decomposition of the signal into its set of
basis functions (wavelets), analogous to the use of sines and cosines in Fourier analysis to represent other
functions. These basis functions are obtained from dilations or contractions (scaling), and translations of the
mother wavelet. The important difference that distinguishes the wavelet transform from Fourier analysis is its
time and frequency localization properties. When analyzing signals of a non-stationary nature, it is often
beneficial to be able to acquire a correlation between the time and frequency domains of a signal. In contrast
to the Fourier transform, the wavelet transform allows localization in both the time domain via translations of
the mother wavelet, and in the scale (frequency) domain via dilations. Although the wavelet transform has
come into prominence during the last decade, the founding principles behind wavelets can be traced back as
far as 1909 when Alfred Haar [4] discovered another orthonormal system of functions, such that for any
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continuous function f(z), the series

S = Z Zaw w@t—k), 0<t<l 4)

converges to f(¢) uniformly over the interval. Haar’s research led to the simplest of the orthogonal wavelets, a
set of rectangular basis functions depicted in Fig. 1. The Haar basis function was of limited use due to it being
discontinuous in nature. Further advancements in wavelet theory involved the introduction of the dyadic
block by Littlewood and Paley. The dyadic block is a sequence of operators that act essentially as a bank of
band pass filters with an interval of separation of approximately an octave. This allows us to rewrite the
Fourier series in terms of its dyadic blocks,

A/ (1) =) (ax cos(kt) + by sin(kr)), (5)

S0y =5+ 3 edf (1), (©)

However, it was not until 1946 that the first time—frequency wavelets (Gabor wavelets) were introduced by
Dennis Gabor [5], an electrical engineer researching communication theory. Gabors idea was to break a wave
up into segments, and then analyze the individual segments of the wave (wavelets), each of which had a well-
defined frequency band and position in time. Although, Gabor’s wavelets worked for continuous
decompositions of signals they were limited in their usefulness as corresponding wavelets for discrete systems
did not exist. Shortly after Gabor’s work, Ville [3] proposed another approach for obtaining a mixed signal
representation. Ville’s work was tied into the research of Wigner (1932), a physicist working in the field of
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Fig. 1. Haar wavelets, 0, 1, 2 levels.
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quantum mechanics, and led to the development of the Wigner—Ville transform, given by
Wi(w, 1) = / FU+ )2 (=1 e dr, 0<i<l, %)

where f(#) is the original time signal. Unfortunately, the Wigner—Ville transform renders imperfect
information about the energy distribution of the signal in the time—frequency domain, and an atomic
decomposition of a signal based on the Wigner—Ville transform does not exist. Following from this work Yves
Meyer, a mathematician researching into harmonic analysis, developed a family of wavelets that he showed to
be the most efficient for modelling complex phenomena. The final transition from continuous signal
processing to discrete signal processing was achieved by Daubechies [6,7] of Bell Labs and Mallat [8]. Since
this work there has been a proliferation of activity with comprehensive studies expanding on the wavelet
transform and its implementation into many fields of endeavor. Applications that have been explored include
multi-resolution signal processing, image and data compression, telecommunications, fingerprint analysis,
numerical analysis, speech processing and structural dynamics [9,10].

As compared to the Fourier transform, the wavelet transform and its derivatives offer significantly greater
flexibility in the analysis of vibration data. Specifically, wavelet analysis represents a signal using a set of non-
stationary waveforms (a wavelet dictionary), allowing non-stationary signals to be analyzed more effectively.
Since many rotating machinery vibrations are at best quasi-stationary, wavelet analysis seems well suited to
the problem of vibration-based diagnostics. Typical wavelet-based diagnostic algorithms tend to use the
classical wavelet dictionaries that have been developed over the years for obtaining signal representations in
over-complete dictionaries (e.g. Method of Frames, Matching Pursuit [11], High-Resolution Pursuit [12], Basis
Pursuit [13]) over the possibility of using multiple dictionaries simultaneously for vibration-based diagnostics.
In an over-complete dictionaries some elements may have representations in terms of these elements and as a
consequence, any given signal representation is non-unique. Thus, the representation is referred to as adaptive,
since there is the option of choosing the representation that best suits the application.

However, a disadvantage of current wavelet-based diagnostic algorithms is the use of currently available
wavelet dictionaries. These dictionaries are not necessarily appropriate for analyzing rotating machinery
vibrations. It has been proposed that a wavelet system that shapes itself to the signal under consideration
could be more robust and useful in classification problems. The adapted lifting algorithm [14—16] uses
properties of a given signal to create a dictionary suited to that particular signal. This adaptation property
enables the creation of a general diagnostic algorithm that is able to tailor itself to a specific transmission, thus
potentially enhancing sensitivity to damage. Samuel and Pines [17] have shown the use of this methodology for
Helicopter transmission fault detection. The approach works well for faults that can be customized to the
library of basis functions used in the adapted lifting algorithms. However, there still is a need for a new and
more adaptive algorithm to identify faults in time-series data. In the next section, we introduce the concept of
empirical mode decomposition as a new non-stationary time-series approach for analyzing time-domain
vibration data.

3. Empirical mode decomposition

The empirical mode decomposition method [2] relies on generating a collection of intrinsic mode functions
of a vibration signal.

3.1. Intrinsic mode functions—IMF

According to Huang, an intrinsic mode is a function that satisfies two conditions: (1) in the whole data set,
the number of extrema and the number of zero crossings must either equal or differ at most by one; and (2) at
any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local
minima is zero. The name intrinsic mode is used to refer to the oscillation modes embedded in the vibration
data. Thus, the IMF in each cycle involves only one mode of oscillation. An IMF is not restricted to narrow
band signals, and it can be both amplitude and frequency modulated.
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3.2. Sifting process

Having defined the concept of an intrinsic mode function, we have to divide the vibration signal into its
family of intrinsic modes. This process is known as decomposition and is based on several assumptions.
Firstly, the signal must have at least two extrema, one maximum and one minimum; secondly, the
characteristic time scale is defined by the time lapse between the extrema; and thirdly, if the data were totally
devoid of extrema, but contained inflection points, then the signal could be differentiated one or more times to
reveal the extrema. Final results can be obtained by integrating all components. Thus, essential to applying
this new method is obtaining the intrinsic oscillatory modes of a vibration signal. A schematic of the process to
identify intrinsic modes of a signal is summarized in Fig. 2. By virtue of the IMF definition, the decomposition
method can simply use the envelopes defined by the local maxima and minima separately. Once the extrema
are identified, all the local maxima are connected by a cubic spline function to define the upper envelope curve,
shown in Fig. 2. One simply has to repeat the procedure for the local minima to produce the lower envelope.
The upper and lower envelopes should cover all the data between them.

The mean of the upper and lower extrema curves is designated as

Xml(t) _ Xmax"zi‘Xmin.

Subtracting the mean from the original signal generates the first estimate of an intrinsic mode function

X(0) = X, (t) = . ©)

®)

This operation is named sifting which leads to the third curve displayed in Fig. 2. While /; represents a first
estimate of the first intrinsic mode function, further sifting is usually needed. By performing successive siftings
a better estimate of the first intrinsic mode function can be obtained. The next sifting assumes that /; is the
signal so that the next estimate becomes

= X1 (0) = hyy. (10)
After k siftings we define the first intrinsic mode to be
(1) = hi. (11)

When performing the sifting process there are a number of issues to be concerned with, including the
elimination of riding waves and the smoothing of uneven amplitudes. One must pay particular attention to
performing too many siftings and creating spurious amplitudes that have no physical meaning. In addition,
Huang points out that one must pay particular attention to cubic spline fittings near the boundaries. Thus,
Huang defines a measure for terminating the sifting process by defining the standard deviation between to

Fig. 2. Sifting process to obtain intrinsic mode functions.
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successive siftings to be

| gy (O = hu(0))?
5-D. = Z lhl(lcl)(l)*hl(kl)(t)]. (12

Typical values of S.D. are 0.2 and 0.3. To obtain the second and subsequent intrinsic mode functions, the
residual signal can be computed as

X(@) — ci() = (). (13)

The residual, r;, now becomes the new data that can be subjected to the same sifting process to extract more
intrinsic mode functions. This process is repeated to obtain ¢, through ¢, intrinsic mode functions. By
summing up all of the intrinsic mode functions it is possible to represent a vibration signal as

X =Y et +ra. (14)

Thus, the original data X (¢) has been divided into n empirical modes, ¢,, plus a residue, r;,.
3.3. Hilbert— Huang transform

Having obtained the intrinsic mode functions from the sifting process above, the Hilbert Transform is used
to obtain phase and frequency. Thus, for a given IMF c¢;(r) = C(¢), the Hilbert Transform becomes

D(t) = —P/ Cf’[) ‘. (15)
This implies that the analytic signal becomes
Z(1) = C(t) +iD(1) = a(1)e’?, (16)

where the amplitude and phase are given by

a(t) = \/ C(1)* + D(t)*, 0(f) = arctan ( c8> (17,18)

Here the notion of phase angle refers to that of a trigonometric function. The IMF is a well-defined function
for any time ¢ with monotonically increasing values.

3.3.1. Instantaneous frequency and phase
The concept of frequency and phase has significant meaning when applying the intrinsic mode functions. If
the IMFs can be considered to be strictly local, then instantaneous frequency can be defined as
do(r)

o) ==~ (19)
where 0 is the phase obtained from the application of the Hilbert Transform to the intrinsic mode functions.
Because the functions are restricted to have certain properties, the phase can be considered to be local and to
increase monotonically as a function of time. This is only possible if the functions are restricted to be
symmetrically local with respect to the mean zero level. This helps to avoid a number of paradoxes associated
with the concept of the analytic signal, Z(#) and phase. Some of these difficulties include the fact that (1) the
instantaneous frequency may not be one of the frequencies in the spectrum; (2) the instantaneous frequency
may be continuous and range over an infinite number of values; and (3) that for a band-limited signal, the
instantaneous frequency may go outside of the band. Thus, to resolve many of these paradoxes when applying
the concept of instantancous frequency, properties of the intrinsic mode functions must be restricted.

3.3.2. Hilbert Spectrum

As explained in the above sections, Eq. (17,18) represents a well-defined phase function for any time z with
monotonically increasing values. Therefore, its time derivatives should remain positive at all times. If an
analytic signal is viewed as a rotation in the complex plane with radius of rotation «(¢) and instantancous



104 D. Pines, L. Salvino | Journal of Sound and Vibration 294 (2006) 97-124

phase angle 6(¢), the instantancous angular velocity of the rotation w(¢), or instantaneous frequency f(¢) =
(t)/27 should remain positive for all time . This instantaneous frequency f(¢) is physically meaningful and
can be used to construct the time—frequency spectrum H(f,?), known as the Hilbert Spectrum or the
Hilbert—Huang Transformation (HHT). H(f, ) is constructed by generalization of ordered triplet [£,/(¢),a(?)]
into a function of two variables [¢,/,H(f, t)] where a(t) = H(f(¢), t).

3.4. Damping

The damping or loss factor values can be calculated from the response data directly using the Hilbert
Damping Spectrum [18,19]. The first step is to define a time-dependent decay factor for each empirical mode
(or IMF) given in Eq. (16), which is rewritten as Z(f) = a(t)el"? = Ce= ¢+ The time-dependent decay ¢ ()
is then defined by using

do( 1 i
TR

dt
If y(¢) = y is a constant, the infinite time integral of this function agrees with the basic decay envelope used in
the conventional damping formulation (¢(¢) = %yt). In the next step, dimensionless variables

L)
= 200(0)

are formulated corresponding to the conventional critical damping ratio or damping loss factor. The variable
n(¢) can be evaluated at a given time ¢ and instantaneous system frequency w(¢), which is modeled by the EMD
and Hilbert transform method as

(20)

and (1) = 20(1)

w(t) = /o) - (/2. 1)

The final representation of time- and frequency-dependent damping is the quantity #(z) for each IMF function
contoured on the time and frequency plane. This is similar to the treatment of the Hilbert Spectrum
introduced in Huang [2]. The term #n(w, £) is a time- and frequency-dependent damping loss factor, named the

Hilbert Damping Spectrum.
-1
s 2a(w,0\ 5 (a(w,0\’
o = (- 505) (“’ +(dors) ) | 22

If the frequency-dependent damping is the only feature of interest and the system is linear, damping can be
expressed as a function of w only.

3.5. Example of time— frequency response

To illustrate properties of the intrinsic mode functions when coupled to the Hilbert Transform, lets apply
the analysis developed above to a simple example. Consider the signal displayed in Fig. 3. Two sinusoids are
displayed, one at high frequency and one at low frequency. A sharp change in the appearance of the two
frequencies occurs at ¢t = 500s. The respective time—frequency representations of this signal are compared on a
contour plot. Notice that the wavelet transform using Morlet basis functions has a tendency to smear the
response, thus losing a substantial amount of resolution. However, the empirical mode decomposition method
with marginal Hilbert—-Huang spectrum delivers fine detail about the nature of the two simulated sine wave
signals. There is little if any leakage and the frequencies appear as sharp lines in the time—frequency plot.

This detail can be seen in the 3-D plots of Fig. 4. A Fourier transform can identify two of the frequencies
but without any time-domain information. Notice that the EMD plot is very sharp when compared with the
smeared results of the Wavelet Transforms. This suggests that the EMD-Hilbert-Huang Transform is capable
of providing a more crisp indication of the frequencies in the signal. This property will be used in the next
section to characterize the incident and dereverberated wave response of a simple structure.



D. Pines, L. Salvino | Journal of Sound and Vibration 294 (2006) 97-124 105

(b)

@ 01
1
0.08
@ N
E I; 0.06
Y &
E ]
g 004
w
| 0.02 4
e , , 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (s) Time (s)
() 041
0.08
N
L o006
Iy
&
004
g o
1
0.02 | X
0 e e
0 200 400 600 800 1000
Time (s)

Fig. 3. Two sinusoid example: (a) time-domain function, (b) wavelet transform using Morlet basis functions, and (c) Hilbert-Huang
spectrum.

4. Concept of dereverberation
4.1. Discrete 1-D structural elements

The concept of phase dereverberation of a structure can be interpreted as obtaining the response of a
structure to the incident energy imparted to the system. By tracking how this energy migrates throughout a
structure, it is possible to infer damage between two successive degrees of freedom [20,21]. The central idea is
that as waves propagate through a structure, their speed changes if the local properties in the structure change.
Thus, it is possible to infer damage by observing how the propagation delay between two points on a structure
change over a particular frequency range.

To illustrate this concept consider the asymmetric element shown in Fig. 5. The equations of motion of this

element can be represented by
k —k W Fr
—k k—mao?]|| Wg

Fp

: (23)
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Fig. 4. Three-dimensional time—frequency representations: (a) Fourier spectrum, (b) wavelet spectrum, and (c) Hilbert spectrum.
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Fig. 5. Discrete asymmetric structural element.

After re-arrangement, Eq. (23) becomes

1
1 _Z
U X U U
FR = k — mw? FL =T FL ’ (24)
R —ma? L L

T is the transformation matrix and the wave propagation constant of this element is

2k — maw? Tu+T
-1 -1 11 2
u = cosh ( B > = cosh (72 ), (29)
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where T = 1, Ty = (k — mw?)/k are diagonal elements of transformation matrix 7. An eigenvalue problem
can be formulated as (A — T)¢$ = 0. By solving this equation, eigenvalues of transformation matrix 7 can be
obtained as A; = e* and 4, = ¢~ #. The 4, term corresponds to left propagating wave component W p while 4,
corresponds to right propagating wave component Wgrp. The two eigenvectors are [¢, (;512]T =1 k(1 —
e M and [¢2 ¢22]T =[1 k(1 —e")]'. The state vector [U; F;]' can be uniquely decomposed in the wave
coordinate space spanned by these two eigenvectors. The state vectors of this asymmetric element can be
represented as

url [ 1 1| [ Wie(0)
Fol = k(0 —e ) k(1 —et) || Wap(0) | (26)
Ug | [ 1 1 ][ Wee(L)
Fel| = ke =1) ke —1) || Wer@) ]| 7)

For the asymmetric element shown in Fig. 5, energy is assumed to be input from the left with £, = 0. A
controller can be added at the right end to extract energy out. The control force is designed to have the form
F.=GUgr = GWyrp(L)+ GWgp(L) and must satisfy two objectives: (1) equilibrium of forces at degree of
freedom Ug, and (2) prevent energy reflection from the right end. Therefore, the control force, F., must satisfy
the equations:

Fr+Fc=0, Wip(L)=0. (28)
By imposing Wp(L) = 0, the frequency-dependent control gain is determined to be
G=k(l—c™). (29)
If the reverberated transfer function (RTF) matrix of an asymmetric element is given by
UL
RTF = | F* k -+ 1" (30)
T\ Ur| T | =k k—mo?|
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Fig. 6. RTF and DTF of Uy: ——, UL /Fr; — —, (UL/FL)prr; (2) magnitude and (b) phase.
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dereverberated transfer functions (DTFs) U, /F; and Ug/F can be obtained using the expression

Fot_(rrer g [0 o 31
Ux ‘( +{0 GD [0] D

The RTF and DTF responses of Ur/F; and Ug/Fy, are shown in parts of Figs. 6 and 7, respectively. As
expected the effect of the control force, F, is to remove the resonance, and anti-resonance from the response.
The control gains for the asymmetric structural elements are plotted versus frequency in Fig. 8. Notice that
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Fig. 7. RTF and DTF of Ug: ——, Ug/Fr; — -, (Ur/FL)prr; (2) magnitude and (b) phase.
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Fig. 8. Control gains, G, for asymmetric element: (a) magnitude and (b) phase.
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this compensator has an unusual magnitude and phase behavior that is not consistent with conventional
causal linear pole zero representations. The magnitude behavior for the compensator has a derivative type
characteristic up until the cutoff frequency. However, the phase is not necessarily equal to 90°. Thus, such a
compensator would be difficult to implement with conventional electronic components with these non-causal
magnitude and phase properties. However, computationally these non-causal controllers can be implemented
offline on analytical models of a structure simulated using a computer.

In addition to using a non-causal virtual controller to obtain the DTF response of a structure, the DTF
response can also be obtained via analytical derivation. The DTF responses can be analytically expressed as

U _ 1 Ur _ e H

FL_k(l—e*H)’ FL_k(l—e*H)'
One important observation that can be made here is that the ratio of these two DTF responses is a pure phase
lag term given by

(32,33)

Ur

U,
This DTF ratio is only dependent upon the structural properties enclosed by degrees of freedom Ug and Uj.
Thus, it can be used to represent and track changes in the local structural dynamics.

e k. (34)

4.2. Linear approximations

Table 1 compares the transmitted response ratio (Ug/U;) of the asymmetric structural element for the
reverberated, dereverberated and linear approximations of the DTFs. Closer inspection of Table 1 reveals that
the transmitted displacement response ratio of the linearized DTF only depends upon the propagation
parameter. This parameter is a function of localized mass and stiffness of the structure between degrees of
freedom ug and u;. Thus, if a structure is damaged between two successive degrees of freedom, the DTF
suggests that damage can be inferred by determining how this propagation parameter changes between two
displacement measurements. Since x is a complex frequency-dependent parameter, one simply has to examine
the magnitude and phase of this parameter. In prior work, Pines and Ma [20] have shown that this parameter
can be used to detect, locate and quantify the extent of damage by tracking the phase variations associated
with the ratio (Ug/Up).

4.3. EMD and phase dereverberation

Using the linearized expressions in Table 1, one can compare the phase relationships computed via wave
propagation dereverberation methods and the phase computed from applying the Hilbert Transform and
empirical mode decomposition. One goal is to ascertain any similarities between the phase computed in the
time domain and the phase computed in the frequency domain using dereverberated wave mechanics. Below
the cutoff frequency for the asymmetric discrete structural element, the phase delay between the response at
Upr and Uy can be approximated as

UR m
phase( — | = —w /= (35)
Ur 2k
Table 1
Transmitted response ratio (Ug/UL)
RTF DTF (nonlinear) DTF (linear)
UL _ k=mow? Up 1 Up_ 1
Fi = —mko? Fr k(1—e=H) Fr ku
Ur _ =1 Ur — et Ur — 1u
Fr, = mo? Fr = k(1—e™H) Fr = ku
Ur _ —k/m UR _ a—u UR_1_pa~1—i 1
T} = o’ 0, =¢ g, =1-n~l-joy5
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To compare this expression to the Hilbert phase, let us consider the displacement response at the left degree of
freedom to be given by

ur(f) = A sin(wo?). (36)

Using the linear approximation of the structural dynamics between ug and u;, the DTF response at the right
degree of freedom can be represented generically as

C(1) = ug(t) = A sin(wot) — A, /% wo cos(aol). 37)
Computing the Hilbert Transform of ug allows us to formulate the magnitude and phase as
1 [ Ur(
D(f) = — / R 4. (38)
n) ="V
This leads to
[m .
D(t) = A cos(mpt) — A Ewo sin(my?). (39)
Constructing the analytic function leads to
Z(1) = a0 = Ay [1 4 (w3 ) etV (40)

Notice that the absolute value of the phase expression is identical to the phase derived for the DTF response.
However, in the expression listed in Eq. (40) the phase is positive and increases with increasing time. Thus, for
the linear approximation, it appears that the absolute value of the Hilbert phase is identical to the phase
obtained from the dereverberated phase. This is important because it implies that one can perform all
computations in the time domain and simply subtract the phase response between successive degrees of
freedom to infer changes in local mass and stiffness properties. This approach will be illustrated below on a
multi-dof example.

4.4. Magnitude and phase sensitivity to structural parameters

Eq. (40) summarizes the dependency of the magnitude and phase expressions for an intrinsic mode function
on the structural parameters of a simple asymmetric structural element excited at a harmonic input frequency.
Because one would like to infer structural damage using this representation of the intrinsic mode function, it is
important to determine the sensitivity of these expressions to variations in structural parameters. This can be
done by computing the derivative of a(f) and 0(¢) with respect to m and k, respectively. This leads to the
following expressions for the magnitude and phase sensitivity with respect to structural parameters m and k:

da(t) _ A(oj/w7) da(t) _ —A(wg/wp)

P D aE T , (41,42)
M 2m 1+ (w3 /w?) 2k /1 + (03 ) ?2)
oy —loy  do) 1w
An T imos Ak e, (349
where the frequency ratio is defined as
T @)
W, m

Fig. 9 plots the magnitude of the non-dimensional amplitude and phase sensitivity versus non-dimensional
frequency ratio. This figure illustrates that below the cutoff frequency the phase expression has the greatest
sensitivity to changes in structural parameters. Thus, it is anticipated that the phase expression would be a
better indicator of damage in a simple (1-D) structure.



D. Pines, L. Salvino | Journal of Sound and Vibration 294 (2006) 97-124 111

102 - -

10"k

10°F o
) C"‘.
o "

o
2 10l -
<) uo*
o] ‘,i‘
= o’
o

102p

10

10'4 1 1 i1 a1l L L1 a3l n P A A | I PR A

102 10" 10° 10’ 10?
Frequency Ratio
Fig. 9. Magnitude and phase sensitivity: ——, magnitude sensitivity; — —, phase sensitivity.
u 1L 0!
1 R B
vV m, vV m,
i Kk k,
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5. Structural health monitoring using EMD
5.1. Multi-dof example

Consider the 3-dof spring-mass system displayed in Fig. 10. The equation of motion for this system is given
generically by M + Kx = F, where

0 0 0 ki —ky 0 1
M=|0 m 0|, K=|-ki ki+ka —ky|, F=|0]. (46—48)
0 0 nmy 0 —kz kz 0

The RTF response for each degree of freedom can be represented as

u/Fy ki —ky 0 1
uz/Fl = |-k ki +k2—m1w2 —ky 0f. (49)
M3/F1 RTE 0 —k2 k2 — m2w2 0

Similarly, using the concept of virtual control, the DTFs can be determined to be

uy/F, ki —ky 0 -
UQ/F] = | =k k1+k2—m10)2+G1 —k> 0

u3/F1 DTF 0 —ky ky — m2w2 + G, 0

, (50)
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where virtual controllers G| and G, are given by
G = ki(1 —exp(—py)) — kol — exp(—p)), (51)

G2 = k(1 — exp(—p)), (52)

where p, and u, are the propagation coefficients.

Now consider the parameters defined in Table 2 for this simple 3-dof freedom system. With this information
it is possible to compute the baseline response of the discrete system to an impulse from the left side. The
damaged cases are generated by reducing the spring constants by 25%, 50%, and 75% for each k; and k;
separately.

5.2. Phase dereverberation

The concept of phase dereverberation of a 1-D structures can be interpreted as obtaining the response of the
structure to the incident energy imparted to the system. Thus, assuming that an impulse is applied to the first
degree of freedom, it is not difficult to determine the RTFs and DTFs as displayed in Figs. 11-13 as the
baseline response. Notice that the (DTFs) do not contain the resonant pole/zero characteristics commonly
found in typical transfer functions since all internal and external reflections are cancelled using controllers G,
and G,. The corresponding baseline displacement responses of the reverberated and dereverberated time series
are displayed in Figs. 14 and 15, respectively. Careful inspection of the dereverberated time series of this
simple structure reveals a phase lag associated with the incident impulsive wave as it traverses the structure
from left to right. Hence, by computing the ratio of successive degrees of freedom, one can track the variation
in structural properties through the relative phase relationship between each successive degree of freedom.
This ratio is computed for the dereverberated response time series in Fig. 15 and displayed in the frequency

Table 2
Baseline parameters of 3-dof spring-mass model

nmy ni kl kz
1 1 1 2.5
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domain in Fig. 16. Thus, as a structure becomes damaged, one would anticipate a change in these phase
characteristics. An example of such a phase change for damage occurring in & is given in Fig. 17. In previous
work, tracking phase changes between successive degrees of freedom has been accomplished using a ‘virtual
controller’, however, the use of Empirical Mode Decomposition permits this monitoring to involve only
processing of the time-series data without the need for implementing a ‘virtual controller’. Hence, by using the
EMD approach the same relative phase information can be obtained to assess damage, shown in Fig. 18
between degrees of freedom u; and u,. Fig. 18(a) shows the phase ratio for simulated damage in k;. The
comparisons are made for the baseline structure with three simulated damage cases (stiffness reduction of
25%, 50%, and 75%). the phase lags are clearly evident due to the softening spring. Fig. 18(b) shows the same
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phase ratio for simulated damage in k,. The phases remain constant for all damage cases because the damage
occurring in k, (between degrees of freedom u, and u3) does not affect the incident energy between degrees of
freedom u; and u, for the dereverberated response.

6. Experimental validation

6.1. Civil building model

To evaluate the performance of the empirical mode decomposition method to aid in the detection and
evaluation of structural damage, time-domain vibration data from a scaled civil building model was analyzed
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with and without the presence of damage. Results from this study are discussed below. The building model
consisted of 3 stories with the ground floor driven by a hydraulic shake system, shown in Fig. 19. At each level
a PCB accelerometers were mounted to measure the vibratory response of the building before and after
damage. To simulate seismic loading, time series from the El Centro earthquake, shown in Fig. 20, was used as
input to the hydraulic actuators. Notice that the undamaged natural frequencies were determined to be 2.5, 7,
and 12 Hz, respectively, for the first three modes of the structure. Three damage cases were simulated by
physically changing the properties of the structure. In the first two cases, stiffness damage was simulated by
removing two bolts in the bottom flange near the ground level in case 1, and by removing two bolts from the
third (top) floor connection in case 2. In case 3, one-third of the mass of the second floor was removed. The
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time-series data obtained from all four accelerometers was processed through the empirical mode
decomposition method to determine the presence, type and amount of damage. Results for cases 1 and 2
are discussed below.
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6.1.1. Case 1: ground floor damage (two bolts loosened)

Fig. 21 displays the undamaged and damaged intrinsic mode functions of the ground floor acceleration for
simulated damage between the ground floor and the first floor of the 3-dof building model. The second floor
IMF plots are similar. In each case there are 9 derived intrinsic mode functions, but, in the figure, the lowest-
frequency IMF is not shown. Careful inspection of these functions suggest that it is very difficult to ascertain
the presence of damage in these time-domain decompositions. However, applying the Hilbert-Huang
Spectrum reveals some unique features that appear in the time—frequency maps of the ground floor and second
floor accelerometer signals plotted in Figs. 22 and 23, respectively. Notice the similarity in the time—frequency
maps, H(f,t), with the exception of the appearance of a noticeable distribution of broadband signal energy
just before 3s in the damaged amplitude map. This intensity is primarily due to the loosening of the bolts of
the ground floor brace used to support the upper stories. As the seismic wave enters the ground floor the brace
bangs against the loose bolts and vertical legs of the structure. This causes an impact to occur prior to the full
seismic wave reaching the ground floor accelerometer. As the seismic wave continues to traverse up the
building, a noticeable change starts to appear in the time—frequency response spectrum H(ft) displayed in
Fig. 23. Notice that there is a significant loss in intensity between the undamaged and damaged responses. This
is particularly true if one tracks the 3 modal frequency band of energy between the damaged and undamaged
spectra. As the intensity in this frequency band diminishes, a new phenomena becomes apparent in the
time—frequency response. At approximately 12, the third mode band start to spread as intensity decreases,
suggesting the presence of a structural nonlinearity in the system caused by the loosening of the two bolts. This
may be explained by the mating members becoming locked as the amplitude of vibration decreases. Fig. 24
confirms that this drop in intensity is consistent with an increase in damping in the system (second floor) as a
result of members sliding back and forth against one another.

6.1.2. Case 2: third (top) floor damage (two bolts loosened)

Figs. 25 and 26 illustrate the case for simulated experimental damage in the third (top) floor corresponding
to a stiffness loss caused by the loosening of two bolts. These figures plot the Hilbert—-Huang spectrum, H(f, ),
for the second and third floor accelerometer signals. Notice that the effect of damage appears in both the
second and third floor vibration signals. Each vibration signal contains three distinct characteristic bands of
energy. Hence, the effect of damage in the top floor causes a slight shift in the mean bands and a spreading of
the band. Moreover, inspection of these figures reveals that again the damping in the system has increased to
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(b) second floor.

essentially reduce the intensity of the high-frequency band of vibration. This increase in damping is evident in
the marginal damping spectrum for the third floor vibration signals displayed in Fig. 27.

For comparison with more familiar wavelet analysis, the same data used in Fig. 25 as an example case study
were processed using the standard Morlet wavelet and the results are displayed in Fig. 28. Although some
similar features can be seen in Figs. 25 and 28, the differences observed using these two methods are
significant. Compared with the Hilbert spectrum, H(f,?), the average overall time—frequency resolution
produced by the wavelet is poor. In the Hilbert spectrum plot, the spectrum displays three distinct frequency
bands. These frequencies can be identified using simple undamaged model of the structure and were
determined to be 2.5, 7, and 12 Hz, respectively, for the first three modes. The Hilbert spectrum also shows the
detailed structural response changes as a function of time and frequency. If one uses standard image
smoothing techniques, such as applying a 2-D Gaussian filter multiple times, the plots in Fig. 25 can be made
to look almost identical to Fig. 28. In this case, some potential important time—frequency information of
H(f, 1) is being lost and the result approaches the wavelet spectrum.
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6.2. Relative Hilbert phase response using EMD

While the use of the intrinsic mode functions coupled with the Hilbert-Huang spectrum and damping
analysis provides a wealth of information about the nature of the vibration response, an alternative approach
is to process the intrinsic mode functions in such a way that the relative phase between successive degrees of
freedom can be used as a metric to infer the location and relative amount of structural damage. Thus, rather
than tracking how individual characteristic frequencies change as a result of damage, one can simply track
properties associated with the reverberated/dereverberated time-domain response of the signal. As previously
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shown, the dereverberated phase and the reverberated phase can be used as an indicator of damage when
incident energy is initiated from one direction. Using EMD the phase response of each degree of freedom can
easily be obtained from the analysis of intrinsic mode functions. Fig. 29 plots the relative phase between
successive degrees of freedom for the ground floor damage case described earlier. Results indicate that in the
case of ground floor damage the relative phase error shows up in all vibration signals from each floor,
suggesting that the damage must have occurred between the ground and first floor. Similarly, in the case of
damage in the top floor, Fig. 30 indicates that the relative phase error between the ground and floor, and the
first and second floor are unchanged. However, the relative phase error between the second and third floor
shows a significant increase, suggesting that the damage is between the second and third floor. Quantifying the
amount of structural damage present in the structure requires correlating these relative phase errors with a
known value of the stiffness between each degree of freedom. This has been illustrated in earlier work by Ma
and Pines [21] where control theory is used to enhance the ability to detect, locate and quantify damage.
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As we point out in Section 6.1.1 that the IMFs, shown in Fig. 21, by themselves are difficult to ascertain the
presence of damage. More importantly, many of the variations in individual modes are due to computational
process. However, when these IMFs are used as a basis function set to compute time—frequency distributions
such as the Hilbert spectrum, the presence of structural damage can be easily interpreted. See, for example,
discussions of comparing undamaged and damage signal of the second floor for ground floor damage case
shown in Fig. 23. Moreover, the relative Hilbert phase damage indicator seems to be even less influenced by
the individual IMF variations. The only significant changes in the relative phase, Figs. 29 and 30, are due to
structural damage.

7. Summary

In summary, the empirical mode decomposition coupled with the Hilbert—-Huang Transform is a powerful
new time—frequency signal processing tool that appears to provide finer details about the underlying vibration
signals in structures with and without damage. Moreover, when the concept of an intrinsic mode function is
coupled with the concept of the phase of a time-domain signal, this information can be used to determine the
relative phase response between two successive degrees of freedom. It is this information that allows one to
interpret the vibration signal as a wave response traversing discrete structural elements. As these structural
elements become damaged, the nature of the wave response changes resulting in phase errors between
successive degrees of freedom. The EMD approach has been used to uncover this phase relationship and
couple it to the concept of structural damage. Results on a laboratory experimental structure are promising
and permit one to determine the presence and location and ultimately the amount of damage with respect to
some baseline condition of the structure.
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This approach is extended through experimental demonstrations to a more generalized 2-D structure with
damages in multiple locations [22]. In addition, a more recent study has shown that this approach can be
applied to data measured from an underwater explosive experiment to detect large composite T-joint
structural damage due to shock [23].
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